Mastery of advanced topics in scientific computing such as reinforcement learning can be made more accessible with open source, complete learning environments that increase interaction and exploration and reduce setup.

Interactive Computing
The JupyterLab interactive computing environment provides a composable baseline for building novel learning experiences including Notebooks and Lab Extensions.

Powered by Open Source
GTCOARlab is powered by the conda-forge ecosystem, and contains cross-platform distributions of key reinforcement learning tools such as tensorflow, pytorch, gym.

Continuous Delivery
Modern continuous integration practices such as GitHub Actions and Binder provide a platform for continuously delivering environments.

A generated workflow builds, tests, and releases 4 variants.

A novel learning experience including self-guided content-as-packages

GTCOARlab Linux (GPU) ships ~600 conda-forge packages

What We Shipped

gt-coar-lab
@gt-coar
Downloadable installers for Linux, MacOS and Windows.

jupyter-starters-reinforcement-learning-dennybritz-feedstock
@conda-forge
@dennybritz/reinforcement-learning as a conda package of Notebooks with tested dependencies, started with a single click in JupyterLab.

jupyterlab-gt-coar-theme
@gt-coar
A JupyterLab theme with dark and light variants for delivering host institution branding.

janki
@gt-coar
Create, review, and improve decks of spaced-repetition cards in JupyterLab.

What We Learned

Siva Maguluri
Nicholas Bollweg

github.com/gt-coar/gt-coar-lab